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Introduction



SOCIALLY AWARE AGENTS

Growing interest in socially aware agents

Human-like interaction with humans

Need for understanding motivations and actions

It is an ability that comes naturally to people

The so-called intuitive psychology



INTUITIVE PSYCHOLOGY

The ability to reason about other people mental states

Intuition from observed actions
e Differentiate agents from objects
e Expect agents to follow physical constraints
e Expect agents to achieve goals in an efficient way

A skill already developed in pre-verbal infants

Even in the case of partially observed actions



EVALUATION OF AN AGENT CORE PSYCHOLOGY

e Need for a rigorous evaluation process of such psychology

e Assess how artificial agents learn about core psychological
reasoning

e Assess how learned representations generalize to new agents
and environments

e The authors propose AGENT, a benchmark inspired by
cognitive development experiments

e Probe the agent understanding of intuitive psychology as if it
was a child.



AGENT benchmark



DATASET

e It consists of a large-scale dataset of 3D animated scenes.

e An agent moves under physical constraints achieving given
goals

e Organized in four categories of trials:

e Goal Preferences

Action Efficiency
e Unobserved Constraints
e Cost-Reward Trade-Offs

e Cover the concept of agents as entities that value some
states of the world over others

e And try to maximize their own rewards minimizing the costs

e The dataset is validated by external human evaluators



TRIALS OVERVIEW

e Every trial has two phases:

e Familiarization: shows the typical behavior of an agent

e Test: shows a video of the same agent in a different situation
e Each test video is assigned a category:

e Expected: The agent behaves consistently to the
familiarization phase

e Surprising: The agent behaves inconsistently (e.g. goal
inconsistency or physics violation)

e The evaluated model needs to correctly evaluate test videos as
expected or suprising



SCENARIOS

e Four macro-types of trial, called Scenarios.
e The reasoning model needs to understand that the agent:
e Goal Preferences: pursues a preferred goal
e Action Efficiency: tends to take the most efficient actions to
reach the goal
e Unobserved Constraints: infers unobserved obstacles by
assuming action efficiency
e Cost-Reward Trade-Offs: understands the level of cost an
agent is willing to pay for the preferred goal



SCENARIOS
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DATASET GENERATION

Object Shapes Obstacles

e The dataset is procedurally generated in TDW

e Obstacles, environment, agent preferences are randomly
picked

e Motions are hand-crafted heuristics



DATASET CONTENT

e 38400 video, 5s to 25s, 35fps
e A total of 3360 trials
e Training: 1920
e Validation: 480
e Test: 960
e Training and validations are pairs of familiarization and
expected test

e Test set is composed of 480 pairs of expected/surprising
videos that share the same familiarization

e The data contains: RGB-D video, instance segmentation,
camera parameters, 3D bounding boxes



EXAMPLES: SCENARIO 1

Scenario 1: Goal Preferences
Type 1.1 Type 1.2 Type 1.3 Type 1.4
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EXAMPLES: SCENARIO 2

Scenario 2: Action Efficiency
Type 2.1 Type 2.2
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EXAMPLES: SCENARIO 3

C Scenario 3: Unobserved constraints
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EXAMPLES: SCENARIO 4

D Scenario 4: Cost-Reward Trade-offs
e 4.1
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Experimental Results




BASELINE MODELS

e The dataset is evaluated with two baseline models

e Bayesian Inverse Planning and Core Knowledge (BIPaCK)
e Theory of Mind Neural Network

e The two models are based on Theory of Mind reasoning

e The paper sketches some high-level details of the models
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BIPACK
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e Core idea: infer hidden mental states through a generative
model of the agent’s plans, during familiarization

e Combines core knowledge of physics and physical
simulation
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BIPACK
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e The model estimates physical parameters and the agent’s
parameters (i.e. rewards and costs)

e Then it indirectly estimates the agent’s trajectory using a
built-in physics engine
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TOMNET
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o Core idea: summarize hidden mental states into a

character embedding during familiarization

e Combine it with the embedding of the state of the test
video to infer a trajectory
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LEAVE-ONE-OUT EXPERIMENTS

£ | Method Goal Preferences Action Efficiency Unobs. Cost-Reward | All
& @ cY DN =N,
1.1 12 13 14 All [ 21 22 23 24 25 All |31 32 All |41 42 Al

Human 95 95 92 97 95|87 93 8 95 94 91 [.8 94 92[8 91 87|91
= | ToMnet-G [ 57 10 67 10 84|09 10 95 10 10 98| .93 8 89| .82 97 .89 | .90
< | BIPaCK 97 10 10 1.0 99|10 10 8 10 10 97|93 88 90| .90 1.0 .95 | .96
— | ToMnet-G [ 50 90 63 88 75|90 .75 45 90 .05 .66 | .58 77 .69 | 48 48 48| .65
< | BIPaCK 93 10 10 1.0 98|10 1.0 .80 10 1.0 97| .93 82 8 |.88 1.0 .94 | .94
e« | ToMnet-G [ 37 95 63 88 71 |35 60 .75 .68 8 65[.63 80 .73[.55 95 .75 |.71
O | BIPaCK 93 10 10 1.0 98|10 1.0 .75 10 95 95| .8 8 87 |.83 1.0 .92 | .94

e When using All familiarization videos from every scenario,
ToMNet and BIPaCK perform very well

e G1: for every scenario, train on every type but one and test
on the left out type. ToMNet has some issues generalizing,
but BIPaCK performs well

e G2: train on every scenario but one, and evaluate on the
left out scenario. Results similar to G1.
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SINGLE-TYPE EXPERIMENTS
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e G3: for every scenario, train on a single type and test on all
other types.
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SINGLE-SCENARIO EXPERIMENTS
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e G4: train on a single scenario and test on all other

scenarios.
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Conclusions




CONCLUSIONS

e AGENT, benchmark for core psychology reasoning

e lLarge-scale dataset of cognitively inspired tasks

e Probe artificial agents understanding of intuitive psychology
e Showcase the benchmark on two baseline models

e Show that the benchmark can help distinguish the
performance of the two models on different generalization
capabilities

e The benchmark is a well-structured diagnostic tool for
developing better models of intuitive psychology
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