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Introduction



WHAT IS RENDERING?

Rendering is the process that takes a 3D scene as input and

generates a 2D image as output.

A 3D scene is defined by :

1. geometry of the contained 3D objects

2. material properties of each object (colors, reflectivity, etc...)

3. lighting conditions

4. position and orientation of the camera

Rendering is a complex process which has not a straight-forward

differentiation.
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WHY DIFFERENTIABLE RENDERING?

Neural Models can be efficiently used for 2D and 3D reasoning.

However, most 3D estimation models rely on supervised training,

which comes with costly annotations of all observable 3D

properties.
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WHY DIFFERENTIABLE RENDERING?

Differentiable rendering enables 2D images to be used as

supervisions for the 3D properties of the scene.

This enables the use of available datasets and cheaper annotations.

Differentiable rendering allows to seamlessly insert the rendering

process in the learning pipeline and let gradients flow through it.
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DIFFERENTIABLE RENDERING
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Applications



OBJECT RECONSTRUCTION

Using 2D Images as supervisions, a Differentiable Renderer can be

used to learn the geometry and materials property of an object.
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FACE RECONSTRUCTION

A more specialized application is using 2D Images as supervisions

to learn the geometry and materials property of a face.
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BODY POSE ESTIMATION

Differentiable Rendering can also be used to learn and optimize 3D

body models to estimate human poses from 2D Images
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3D ADVERSARIAL LEARNING

Differently from 2D Adversarial Learning, which attacks the 2D

image input, 3D Adversarial Learning attacks the 3D object

properties, such as geometry and materials, to induce a

classification error in neural networks.
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Algorithms



RENDERING: A MORE PRECISE FORMULATION

Φs : Shape parameters (geometry of the object)

Φm: Material parameters (colors, reflectivity, etc...)

Φl : Lighting parameters

Φc : Camera parameters (position, orientation, FOV, etc...)

Ic : RGB Image space

R : Φs ,Φm,Φl ,Φc → Ic : Rendering Function

A Differentiable Renderer computes the gradients ∂I/∂Φ that

optimize a specific loss function on the rendered images.
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RENDERING PROCESS

Given a pixel in the image, the renderer (1) associates it with a

face of the mesh and (2) computes its color based on material,

camera and lighting parameters.

Step 1 (rasterization) is done by projecting the 3D scene onto the

2D camera space and selecting the enclosing face closest to the

camera. This step yields a discrete face identifier and it is thus

undifferentiable.
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RENDERING PROCESS

Step 2 is instead differentiable, however the derivative of the image

pixels with respect to vertex positions is always zero, therefore

analytical derivatives are of little help for optimizing the geometry.

Gradients can be computed by: approximating the gradients

themselves or by approximating the rendering (in particular the

rasterization step).
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3D Adversarial Learning



TASK DETAILS

We want to fool a generic image classifier, changing the input so

to make it misclassify the rendered 3D object.

The classifier receives the 2D image output by the differentiable

renderer and classifies it.
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DIFFERENCES FROM 2D ADVERSARIAL LEARNING

Differently from 2D Adversarial Learning, we do not perturbate the

direct input to the classifier.

Instead, we use the gradient that flowed through the differential

renderer to perturbate the 3D Objects properties, for example its

texture.

A texture can be seen as a sticker that is applied onto a 3D object

whole surface. It defines the object colors and can approximate

other physical properties such as roughness.
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EXAMPLE OF A TEXTURE
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TEXTURE SALIENCY

Gradient flowing to the material properties enables the estimation

of Texture Saliency, which are Saliency Maps computed on a

material texture.

Texture Saliency Maps highlight the pixels in the texture that most

influenced the decision of the classifier.

They can be used to pick the pixels that will change the prediction

the most when perturbated.
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TEXTURE SALIENCY
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PGD-TEXTURE ATTACK

We are studying a variation of the PGD attack directed to the

texture of the 3D Object.

For each 3D object, we choose several viewpoints from which to

render it. This allows us to attack the object when viewed from

many directions.
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MULTI-VIEW RENDERING
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PGD-TEXTURE ATTACK

T : Original texture (fixed)

δ: perturbation (learnable)

ε: max L2-norm of the perturbation

α: rate of update (similar to learning rate in GD)

R(T , δ)→ Ic : Given the texture T and the perturbation δ, outputs

the rendering from all viewpoints.

C(Ic)→ c : Given an image, classifies the image by assigning it a

score for each possible class.
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PGD-TEXTURE ATTACK

Every epoch, we compute c = C(R(T , δ))

An object of class ĉ is correctly classified if arg max c = ĉ

L = CrossEntropyLoss(c , ĉ) is our loss, it ignores wrong

classifications.

We backpropagate the loss L back to δ, obtaining ∇δ.

21



PGD-TEXTURE ATTACK

Then we update δ as follows:

1. δ = δ + α · ∇δ: perturbate with gradient

2. clamp T + δ between 0 and 1

3. clamp δ to have norm at most ε

We then pass to the next epoch.
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ATTACKED OBJECT EXAMPLE
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ATTACKED OBJECT EXAMPLE
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3D ADVERSARIAL ATTACK TRANSFER

Differentiable Renderers are still far from photorealism.

We want to verify that the attacks made with differentiable

renderers can transfer on photorealistic (non differentiable)

renderers.
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3D ADVERSARIAL ATTACK TRANSFER

We can use Virtual Environments, such as SAILenv, to render

photorealistic versions of the attacked 3D Object, before and after

the attack.

The same classifier is then used to compute the accuracy on

classifications and evaluate how the attack has transferred to the

photorealistic renderer.
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WIP: TEXTURE SALIENCY TRANSFER

Given a viewpoint, A,B are the images rendered respectively by

the differentiable renderer and the non differentiable one.

The pixel Ai ,Aj corresponds to the texture pixel Tî ,Tĵ . Since the

viewpoint is the same, we can also associate that texture pixel to

the pixel Bi ,Bj in the same position of the image.

This is only an approximation, as it depends on how the non

differentiable renderer samples the texture.
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ATTACKED OBJECT TRANSFER EXAMPLE
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ATTACKED OBJECT TRANSFER EXAMPLE
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Conclusions



OPEN PROBLEMS

• Little support for embedded environments: currently

hardware and processing power requirements are out of reach.

• There is no easy and standard support for extensions:

each library need new algorithms to be implemented from

scratch

• Limited functionalities: each library has several limitations

with respect to non differentiable renderers, such as faces

primitives other than triangles, output formats, animation etc.
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OPEN PROBLEMS

• Little support for light and material models: Currently all

libraries offer only non-pbr rendering, supporting only color

textures and neglecting the impact of light reflected on

objects.

• No benchmarking or debugging: There is currently no tool

that allows for spotting inaccuracies in rendering and gradient

estimation.

• No model sharing: each library has its own format and it is

difficult to export a model for another library
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CONCLUSIONS

Differentiable rendering is a novel field, but is quickly maturing.

It allows researcher to develop neural model that understand the

3D world through 2D images.

It will help reducing the need for costly 3D data collection and

annotation.

Hopefully it will reach real-time performances in the near future.
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CONCLUSIONS

3D Adversarial Learning is a promising approach to transfer

Adversarial Attacks to practical real world scenarios.

It is very efficient to attack the 3D objects when rendered by the

differentiable renderer.

We are making progress on transferring it to photo-realistic non

differentiable renderers.
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Thank you for listening!
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