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SIR Models



WHY LEARN EPIDEMIC MODELS?

During 2020, the spread of COVID-19 infection affected the

whole world.

Some countries resorted to non-pharmaceutical interventions of

various degrees to control the spread of the virus, such as

lockdowns or imposing the use of masks.

Many countries collected vast amounts of detailed data about the

evolution of the epidemic.

Understanding the evolution of the epidemic from the data can

help us understand the efficacy of this interventions and predict

the spread of the illness if no action is taken.
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WHY LEARN EPIDEMIC MODELS?

Deterministic epidemic models, such as SIR, usually model the

evolution through some constant parameters, such as infection

rate.

Constant parameters are ill-suited to model a dynamic

phenomenon where the spread is counter-acted by the

intervention of national authorities.

Time-varying parameters are better suited, but the parameter

space becomes quickly too big to be manually fine-tuned where

analytical solutions do not exist.

A Machine Learning approach can be used to explore the

parameter space and find interesting and useful models.
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THE MODEL

A classical deterministic approach to model an epidemic is the

susceptible, infectious, removed (SIR) model.

A population of N individuals is divided into

• x(t) = (# of susceptible at time t)

• y(t) = (# of infectious at time t)

• z(t) = (# of removed at time t)

We assume that the population remains constant, therefore:

x(t) + y(t) + z(t) = N.
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THE MODEL

The dynamics of the epidemics then can be described by the

following system of ODEs1:
x ′(t) = −βx(t)y(t)

y ′(t) = βx(t)y(t)− γy(t)

z ′(t) = γy(t)

• β > 0→ infection rate

• γ > 0→ removal rate

• R0 := β/γ → reproduction number

1Norman TJ Bailey et al. The mathematical theory of infectious diseases and

its applications. Charles Griffin & Company Ltd, 1975.
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A more sophisticated epidemiological model is SIDARTHE2,

where we add more compartments to better describe the stages

of infection. (ODEs can be found in the Appendix)

2Giulia Giordano et al. “Modelling the COVID-19 epidemic and

implementation of population-wide interventions in Italy”. In: Nature Medicine

(2020).
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SIDARTHE

Compartments:

• S: Susceptible

• I: Asymptomatic undetected infected individuals

• D: Aymptomatic detected infected individuals

• A: Symptomatic undetected infected individuals

• R: Symptomatic detected infected individuals

• T: Acutely symptomatic infected individuals

• H: Healed individuals

• E: Deceased individuals

An important difference is that we differentiate between detected

and undetected individuals.
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DYNAMIC PARAMETERS

The epidemiological parameters are usually considered constant in

time.

This prevents the model from describing changes due to

non-pharmaceutical interventions (lockdown, etc...).

We want to extend the model by allowing daily changes to the

parameters values.

β → β(t) τ → τ(t)

In this way we can monitor how parameters (i.e. infection rate)

change during the epidemic evolution.
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The data



OFFICIAL DATA

We pre-processed the data3 to obtain 5 time-series which map to

5 SIDARTHE compartments:

• D: detected asymptomatic individuals

• R: detected symptomatic individuals

• T : acutely symptomatic individuals

• Hd : portion of healed individuals that were previously detected

• E : deceased individuals

We do not have access to data about the undetected infected

individuals (of course).

3You can find the data following this link:

https://github.com/pcm-dpc/COVID-19
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TRAIN/VALIDATION/TEST SPLIT

All time-series were split into three sets:

• Train Set (size T): 0 ≤ t ≤ T

• Validation Set (size V): T ≤ t ≤ T + V

• Test Set (size D): T + V ≤ t ≤ T + V + D

As usual, the training set will be used to fit the model, the

validation set will be used to evaluate over-fitting and the test set

will be used for the final evaluation of the model.
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The learning problem



GENERIC STATEMENT

We call u(t) the concatenation of all parameters at time t.

u(t) = (α(t), β(t)...)

Problem

Learning u(t) from supervisions on the number of people in the

detected compartments, i.e. D, R, T , Hd and E .
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PRECISE FORMULATION

Given the supervisions D, R, T , Hd and E

Given D̂u, R̂u, T̂ u, Ĥu
d and Êu the solutions of SIDARTHE

equations given by parameters u(t).

We want to find the set of parameters u(t) which minimizes the

MSE of the prediction against the targets on samples for

t = 0→ T .
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GRADIENT DESCENT THROUGH ODES

The learning is done through Gradient Descent.

The SIDARTHE equations are computed through numeric

integration, using Heun method and a fixed time step.

To obtain the gradient of parameters through the integration, we

have implemented the Heun method in PyTorch to leverage its

powerful autograd framework.

Sidenote: there are strong similarities with Neural ODEs.
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Regularization



SMOOTHNESS

In case of overfitting, the learned parameters could result in a

discontinuous and wrinkled function of time.

To avoid this problem and reduce overfitting, we augment the loss

function with a regularization term R(u).

The penalty R(u) is higher when the parameters are discontinuous

and enforces a smooth function.
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MOMENTUM

Since the solution is computed through integration, the value of

parameters at initial time steps have a bigger impact on the

solution w.r.t. values at final time steps.

This can be seen in the gradient of each parameter: for t → T ,

gradients approach 0.

Hence, we augmented the Gradient Descent update rule with a

momentum term, which manages to distribute the gradient

throughout the u function.

Important note: the commonly known momentum carries the

gradient over subsequent epochs; this momentum term carries the

gradient over subsequent time steps of the parameters u(t)
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TARGET NORMALIZATION

D, R, T , Hd and E have very different scales of values.

E.g. max(Hd) ≈ 200′000 and max(T ) ≈ 4′000

This could cause the learning to prefer a target at the expense of

another one.

We weight the loss components for each target based on its scale

relative to the other targets.
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Fitting the data



INFECTED INDIVIDUALS
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ACUTELY SYMPTOMATIC & DECEASED
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DETECTED HEALED INDIVIDUALS
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R0

Mar
2020

Apr May Jun Jul Aug Sep

date

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

R0 - train/validation/test

Prediction (train)
Prediction (val)
Prediction (test)

20



PARAMETERS
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Thank you for listening!
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Appendix



SIDARTHE EQUATIONS



Ṡ(t) = −S(t)
(
αI (t) + βD(t) + γA(t) + δR(t)

)
;

İ (t) = S(t)
(
αI (t) + βD(t) + γA(t) + δR(t)

)
−(ε+ ζ + λ)I (t);

Ḋ(t) = εI (t)− (η + ρ)D(t);

Ȧ(t) = ζI (t)− (θ + µ+ κ+ φ)A(t);

Ṙ(t) = ηD(t) + θA(t)− (ν + ξ + χ)R(t);

Ṫ (t) = µA(t) + νR(t)− (σ + τ)T (t);

Ḣ(t) = λI (t) + ρD(t) + κA(t) + ξR(t) + σT (t);

Ė (t) = φA(t) + χR(t) + τT (t)



LOSS FUNCTION

The loss function F (u) has 5 components, one for each target.

Each target is weighted by the normalizing weight Wx , which

takes into account the difference in scale relatively to other targets.

Reminder: X̂ is the target, X
u

is the solution computed by the

model using parameters u(t)

F (u) =
1

T

T∑
t=0

WD

2

(
D(t)− D̂u(t)

)2
+
WR

2

(
R(t)− R̂u(t)

)2
+

WT

2

(
T (t)−T̂ u(t)

)2
+
WH

2

(
Hd(t)−Ĥu

d (t)
)2

+
WE

2

(
E (t)−Êu(t)

)2



SMOOTHNESS

The smoothness regularization term depends on the derivative of

the parameters.

It is also weighted with the hyper-parameter WR to better tune the

regularizing effect of the term.

R(u) =
WR

T

T∑
t=0

u̇(t)2
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MOMENTUM

The momentum term is added to the well-known update rule of

Gradient Descent.

uk+1
t =

ukt −∇t f (uk) if t = 0

ukt −∇t f (uk) + µt(u
k+1
t−1 − ukt−1) if t > 0

Where k is the epoch number, ∇t f (uk) is the gradient of

parameter u at time t and epoch k, µ(t) = sigmoid(mt) and m is

a hyper-parameter.



LINKS

SAILab: https://sailab.diism.unisi.it/

Code: https://github.com/sailab-code/learning-sidarthe

Data: https://github.com/pcm-dpc/COVID-19

Speaker webpage: https://enricomeloni.github.io

https://sailab.diism.unisi.it/
https://github.com/sailab-code/learning-sidarthe
https://github.com/pcm-dpc/COVID-19
https://enricomeloni.github.io
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