LEARNING IN VIRTUAL ENVIRONMENTS

LEARNING: STATIC VS DYNAMIC LEARNING

- Learning: using experience from the environment to improve performance
- Static: learner cannot interact with the environment
- Dynamic: learner can interact with the environment
- State-of-the-art AI models are often trained with static datasets
- Human learning relies on interaction with environment
 - Dynamic learning

3D GENERATED STATIC DATASETS

- Computer-generated static datasets have been used in literature
 - KITTI (distance estimation)
 - TORCS (vehicle recognition)
 - Half-Life (surveillance tracking)
 - GTAV (pose estimation, object detection, autonomous driving)
- Cheap and fast creation of static annotated dataset
- Usually good performances on standard benchmarks

LEARNING INVISUAL ENVIRONMENTS

- Human-like learning requires interaction with a dynamic environment
- The agent should be able to interact with it
- Using a robot is impracticable
 - Expensive
 - Dangerous
 - Slow
 - Experiments cannot be easily reproduced

LEARNING INVIRTUAL ENVIRONMENTS

- 3D Computer-generated and simulated environment
- Must-have features
 - The agent must be able to interact with it and stimulate responses
 - Photorealistic for easy transfer to real life application
 - Customizable and extendable to add new scenarios
 - Fast rendering
- Advantages
 - Decoupling learning from physical issues
 - Simulated time can be faster than real time
 - Cheap and reliable reproduction of experiments

WHAT RESOURCES ARE AVAILABLE?

- AI2-THOR and Habitat
- Most recent frameworks
- Photorealistic
- Habitat has larger scenarios
- AI2-THOR has more features
 - Customizable
 - Physics and interactions
- Custom graphics engines

Framework Comparison

Environment	3D	Large-Scale	Customizable	Photorealistic	Physics (Forces,Friction,etc.)	Object Interaction	Multi-agent
Atari							
OpenAl Universe	~	~	\checkmark				
Malmo	~	~	~				
DeepMind Lab	~		\checkmark				
VizDoom	~		~				
Matterport3D	~			~			
MINOS (Matterport3D)	~			~			
House3D	~	~	~				
MINOS (SUNCG)	~	~	~				
HoME	~	~	\checkmark				
Habitat	~	~		~			
AI2-THOR	~		\checkmark	\checkmark	\checkmark	~	~

EXISTING GRAPHICS ENGINES

RAGE (ROCKSTAR ADVANCED GAME ENGINE)

- Used by games such as GTAV
- Not natively customizable
 - Community reverse engineered the engine API
- Need to manually implement image annotation
 - Relatively easy to add Bounding Boxes
 - Very difficult to add Segmentation
- Can add moving objects and simulate real-life scenarios (cars, planes, people)
- Generation is very slow, around 50.000 images per hour

RAGE DEMO

HABITAT AI

- Supports highly realistic 3D environment dataset
 - SUNCG, MatterPort3D, Gibson, Replica
 - The user can provide own 3D environment
- Excellent performances: simulation is not a bottleneck for learning
 - Simulator developed in C++
 - Up to 10.000 frames per second
- Python API to interface with common learning frameworks
 - Move agent and obtain sensor data
- Customizable sensors and agent geometry and physics

HABITAT AI ENVIRONMENT

- Agents receive information on what they see
 - RGB, Depth, GPS
- Multiple built-in AI tasks for learning by imitation
 - Navigate to point or object
 - Simple QA tasks
- Habitat Challenge
 - Separate module with benchmarks and baselines
- No built-in interaction or moving objects

HABITAT AI DEMO

AI2-THOR

- Actionable objects: the agent can interact with them
 - E.g. microwave door can be opened, bread can be sliced
- Good degree of photorealism
- Python API to interface with scenarios and objects
 - Moving agent, applying forces and interacting with objects, obtaining sensor data
- The user can provide own scenarios
- Modeling moving objects seems quite hard

AI2-THOR ENVIRONMENT

- Multiple Agents in the same environment
- Agents can move on a grid (configurable size)
- Agents receive information on what they see
 - RGB and Depth info
 - Segmentation and bounding boxes info
 - Object visibility and interactability
- Agents can interact with objects
 - Push, pull, grab, release, throw, slice, empty, fill, etc.
- Object free movement is very limited

AI2-THOR DEMO

CUSTOM GRAPHICS ENGINES

UNITY - UNREAL

PROS

- Completely customizable
- Easy to implement segmentation
- Moving objects can be added quite easily

CONS

- No built-in features
- Behavior of objects must be manually scripted
- Trajectory is determined by the script

UNITY ENGINE DEMO

CONCLUSIONS

- Static datasets do not allow human-like learning
- Literature used 3D computer-generated datasets: still static
- The virtual environment approach looks promising
 - There are a few interesting and useful resources
 - Although not fully mature and with a little community
- Existing work have shown the usefulness of the approach
- Extensions are needed to model more scenarios and moving object
- Custom engines offer more flexibility but it is harder to create realistic scenarios