SAILENV

Learning in Virtual Visual Environments Made Simple

TEAM AND LINKS

- Team members:
 - Enrico Meloni
 - Luca Pasqualini
 - Matteo Tiezzi
 - Stefano Melacci
 - Marco Gori
- Official project page: <u>http://sailab.diism.unisi.it/sailenv/</u>
- arXiv pre-print: <u>https://arxiv.org/abs/2007.08224</u>

INTRODUCTION

0

WHY VIRTUAL ENVIRONMENTS?

- Simulation of real-world settings with 3D graphics engine
- Perform experiments too costly in real-world settings
- Automatic and precise annotation
 - Bounding boxes, semantic segmentation, motion information, etc...
 - Little to no need of human intervention for data collection
- High degree of control on experimental settings
 - Lighting and weather conditions, image resolution, etc...

EXISTING VIRTUAL ENVIRONMENTS

Platform	Photoreal	Depth	OptFlow	LightNet	OS
DeepMindLab		\checkmark		n.a.	Unix
Habitat	\checkmark	\checkmark		n.a.	Unix
AI2-THOR	\checkmark	\checkmark			Unix
SAILenv	\checkmark	\checkmark	\checkmark	\checkmark	Win+Unix

SAILENV

SAILENV ARCHITECTURE

- Client-server architecture
 - Virtual Environment: server
 - Agent API: client
- Unity Server
 - Physics Simulation
 - Real-Time rendering
 - Data generation and annotation
 - Lightweight Network Protocol
- Python Client
 - Lightweight, cross-platform API
 - High-level commands for the Server
 - Exposes views to common ML Frameworks

OBJECT LIBRARY

READY-TO-USE DOMESTIC SCENES

MOVING AGENT IN THE SCENE

- Agent has three ways of moving in the scene
- I. Python commands to define custom moving criteria
 - Simple functions for changing position and orientation
- 2. Following a track included in the scene
 - Track is created by the scene designer
 - Can be changed through the Unity Editor
 - Cannot be changed at runtime
- 3. Through keyboard and mouse in FPS-like fashion

MOVING OBJECTS IN THE SCENE

- Movements are simulated through Unity Physics Engine
- The movement behavior is scripted with C#
- Two sample movements are included in SAILenv
- I. Wander Plane
 - The object moves along a configurable set of waypoints
 - The target waypoint is switched at random intervals
- 2. Poltergeist
 - A random force and torque are applied at random intervals

PYTHON API

AGENT PERCEPTION

ENVIRONMENT VIEWS

- SAILenv generates views of the environment in real-time
- Every view is taken from the Agent POV
- Each view yields pixel-wise information on the environment
 - Main: HxWx3 RGB view in OpenCV format
 - Category: HxWxI category ID of the object
 - *Object:* HxWx3 unique object ID
 - *Flow*: HxWx2 optical flow of the pixel w.r.t. the Agent
 - Depth: HxWxI depth of the pixel w.r.t. the Agent

CATEGORY AND INSTANCE SEGMENTATION

- Categories can be quickly customized
 - Through Unity Editor
- Object ID is automatically generated
 - Guaranteed to be unique

Category View

DEPTH AND OPTICAL FLOW

- Depth intensity is proportional to vicinity w.r.t. the Agent position
- Optical Flow is the velocity in px per frame of the pixel

OPTICAL FLOW COMPARISON

SAILenv

LiteFlowNet

OpenCV

EXPERIMENTAL EVALUATION

PHOTOREALISM EVALUATION

- Can a state-of-the-art object detector recognize objects in SAILenv?
- We tested with Mask R-CNN trained on COCO-train2017
- We focused on categories from the COCO dataset
- We measured the IoU between predictions and ground truth from SAILenv
- Mask R-CNN robustly detects a large portion of objects
- Some problems arise from occlusions and labeling criteria

DETECTION ERRORS

Ground Truth

Prediction

OPTICAL FLOW EVALUATION

- As seen before, motion estimation is highly accurate
- What is the computational burden of motion estimation?
- We compared with OpenCV and FlowNetLite

CONCLUSIONS

- We presented SAILenv, a platform based on Unity Engine
- Platform which makes it easy to create, run and get data from realistic 3D Virtual Environments
- Vision-related algorithms can be efficiently evaluated
- To the best of our knowledge, SAILenv is the first platform which yields motion information
- We believe it is a good entry point for researchers interested in 3D Virtual Environments
- Future developments: multi-agent, new objects and scenes

THANK YOU FOR LISTENING